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Abstract. A method based on the generating function technique is proposed to calculate matrix
elements of the three-dimensional rotation operator for anisotropic Gaussian wavefunctions.

Among the many sets of wavefunctions used in quantum mechanical calculations of atoms,
molecules and atomic nuclei (see [1] for an extensive review) the Cartesian Gaussian (CG)
set [2,3] is commonly used due to its simple analytical form. The CG basis has some
disadvantages, such as having the right asymptotical behaviour or not fulfulling the cusp
conditions at the nuclear centres, but its simple analytical form allows for an analytical
and efficient evaluation of the various matrix elements needed in the calculations [4].
Most of the CG bases used have spherical exponents but it has also been suggested [5]
that using anisotropic exponents of the forate, x? + o, y?x,z%) could be advantageous

to deal with the anisotropy of the molecular environment. In nuclear physics, where the
concept of symmetry breaking at the mean-field level has been very successful in explaining
collective properties of atomic nuclei such as the appearance of rotational bands, the use of
an anisotropic Gaussian basis is very common [6-8].

In this paper we address the problem of finding analytical expressions for the
representation of the three-dimensional rotation operator in the most general Cartesian,
anisotropic Gaussian (CAG) basis in which the exponent of the Gaussian is not isotropic
(this basis is also refered to as the elliptical Gaussian basis). The results obtained include
as a limiting case the representation of the rotation operator for the isotropic Gaussian basis
(results for isotropic Hermite—Gaussian functions and rotations along one axis can be found
in [9]). The motivation for this calculation is that this representation is needed whenever one
wants to include quantum mechanical effects beyond the Born—Oppenheimer approximation
in dealing with the rotational bands of molecules [10], molecular collisions [11] or rotational
spectra in atomic nuclei [12, 13].

The rotation matrix to be computed is defined as

R@)n) =" Ruw(Q)In") @
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where R(Q) is the operator of active rotations written in terms of the Euler angles
Q= (B, y) [14]

R(Q) = e i g 1B, givd: "
and the ketn) is a shorthand notation for the CAG wavefunction

(rln) = (rlny, ny, ng; by, by, by) =W, (x/b) W, (y/by)V,.(2/b;) A3)
where

Hereb,, is the characteristic length along each direction and the ingdexands for the set
x,y andz. Let us note that these functions are not orthogonal:

o0 Xi Xi ﬁbx, (n; + l’l: - nn
./ i, (b> W, (b) - 2(n;+n)/2 S+ even ®)
—00 Xi Xi !

The matrix elements of the rotation operator between CAG wavefunctions with different
lengths can be written, in general, as

R, (2) = (ny, ny,ng; by, byv bz|ﬁ(9)|n;a n;v n;; Cx, Cy, Cz> = Inxnyn: (6)

Il gl
nxn}.n:

where the quantity,,""”"’ is the following integral

z

’ ’

I"/X”,y”/z :/ d3,r. 1 " l . i " )L/ " y7/ " i/ " e‘%’l‘Mr' (7)
Mty by by b, Cx Cy c;

Herer’ = (x/, y’, z’) are the rotated coordinates definedli)yQ) Y (r) = ¥ (r") and related
to » according tor’ = D(«By)r with the real and unitary matrilo(2) given by

cosy siny O cosp 0 —sing cose sina O
D(R) = (—siny cosy 0) ( 0 1 0 ) (—sina (o101 O) . (8)
0 0 1/ \sing 0 cosB 0 0 1
The matrixM in the exponent is
M(Q) = B2+ D'(2)C?D(Q) (9)
with B2 and C? given by
/b2 0 0 1/c2 0 0
B? = 0 1/b§ 0 Cc?’= 0 l/cﬁ 0o . (10)
0 0 1»? 0 0 Ye?

From its definition it is clear that the matrM is real, symmetric and definite positive.
To compute the integral we use the generating function technique. The generating
function of the monomialx /b}*)(y/b,)" (z/b,)" is defined as

eZPBT = 2m+n“.+n;pizxp7yy PZ’ 1 x l y i z ' 11
Z n! ny! n! \ by b, b, (11)

nynyn;

Using it, the calculation of """ is reduced to the evaluation of the much simpler integral

I
n.tni\'ni’

. P P P gl gy g
/ By @ 3rMr+2ar _ Z ON+N' Fx £y Pz HAx Hy Hz  pisnyn: (12)

-

Al 7] Al n.n.n.

ne! ny! nt n/tn/lplt
nenynnnn’, X TRys e TRt Tyt Tz
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where we have introduced the column veaioe= Bp+D'Cgq and definedV = n,+n,+n,
and N’ = n, +n), +n,. Once this integral has been computed, the result is expanded in
powers ofp andq. Comparing this expansion with the right-hand side of equation (12) the
desired result is obtained.

The integral is straightforward,

3/2 3/2
/ By e srMr+2ar _ (27) gaMa _ (2r) gAtm it (13)
+/detM v/ detM

and the result has been expressed in terms of the vectoK a whereK is the unitary
matrix that diagonalizes the Hermitian mati®, i.e. MK = Km, and m denotes the
diagonal matrix of eigenvalues ®fl. Now using the explicit expression ¢f= KTa =
KTBp + KTD'Cq we can expand the right-hand side of equation (13) as

258 (fy + g — DI 3 fs s 3 8s
ot s Stan ) (L)
Sstgstms n=1

n=1

f1/2/38182835=1,2,3
where the following definitions have been introduced,
Li; = (K'B),; (15)
= (KTDTC)I‘]’- (16)
Now the quantitie}_, L, pn)”s and (Y, Fingn)® are expanded in powers of the and
qi

3 fs s ag a;,—by L r pn
(;me”) _fflLfAZZ(fq—ag—b)ll_[(L ) ol a7)

a,=0 by=0 nts n'
3 2 8 8s—d; —d;—h, Fo \' g7
(;qun> B ZMZO (gv—d —hy)! D(F) Pl (18)

where for eachs the couple of indices; andr; (i < j;i,j # s) stand fora, and b,
(or d, and h) respectlvely The quantlty"*” "* is proportional to the coefficient of

nn il

ny  n;

PP Py ql q2 q3 in the expansion (14) which leads to the following systems of equations
for the indices of equations (17) and (18):

ny=fi—a—bi+ax+as (199)

ny = fo—az—by+ay+ b3 (1%)

n,= fs—az—bz+ b1+ by (19)
and

n, =g —di—hi+dy+ds (20a)

n, =g2—do—hy+di+h3 (200)

n. =gz —dsz— hz+hy+ ho. (20c)

Summing up separately the three equations of equation (19) and (20) we get
N=ny+ny+n.=fi+ fo+ f (21)
and

N'=n +n\ +n, =g+ g+ g3 (22)
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respectively. These relations show that the rank of each system is two; i.e. in each system
of three equations in equations (19) and (20) two out of the six unknowns can be determined
in terms of the others. Taking into account the above constraints we can write

nynyn; Nxlyn; n;n"n’.
Liww = D Yo QRREWNLEE Qe (F) (23)
S1+fa+ fa=N g1+g2+g3=N’

with the following definitions,

3/2 fs 8s
N/if2fs — (2m) / Bss (fs + g — DN Ciy e even (24)
818283 /detM i5a mé(fﬁgs) fi+8s.
and
nynyn LSS f" l LSV! & 1
Q' (L) = i, ! ( ) ( _ ( ) ) (25)
Aiess ’ 5=123 By (;m (fs — ag — by)! g Ly Iy

n'n!

Here the sum indices; andb, are restricted by equation (19). The quan@i’qg;g;(F) is
defined as in equation (25) but substituting the maltrizy F, the indicesf; by g;, Bys by
C,s and restricting the sum indices by equation (20).

In the limit @ = 8 = y = 0 the rotation matrixD(0) is the unity matrix,M is diagonal
andK is also the unity matrix. Therefore, theandF matrices are diagonal implying that

Q) (L) and O ere: (F) will only be different from zero when the exponents of the off

diagonal elements df andL are zero (i.ea; = by, = g, = hy = 0) and then

Q;I;‘lz);s(l‘) = 5fl,ﬂx 8.f27")'6.f3,113 (26)
Qy1g28: (F) = 8g1n, 8g0m,8g5.m;- (27)

This result shows that the quantity;/2/* is nothing but the matrix overlap of our bases.

Another interesting limit corresponds to the isotropic case where the maBiess C
are proportional to the unity matrix. In this calgkis also diagonal anH{ is again the unity
nynyn;

matrix. ThenL = B implying Q7" (L) = 85,1, 8f,.1,855.n.- On the other hand; = DTC
and therefore

D “ D35 D3y DiDs
- dl - h1)|d1|/’11' (gz - d2 - hz)'dz'hz‘

n'n’ n’
Ogrees (F) = n./r!n/y!n/z!

/11h2/’l3d1d2d3 (gl
g3—d3—h3 yd3 nh3
% D33 D13D23
(g3 - d3 - hg)!d3!h3!

where the summation indices are again restricted by equation (20).

In conclusion, we have obtained an analytical expression for the rotation matrix in the
Gaussian anisotropic basis that is well suited for practical applications as in, for instance,
the full quantal treatment of the rotational motion in molecules or atomic nuclei.

(28)
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