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Representation of the three-dimensional rotation operator
in the anisotropic Gaussian basis

Rashid G Nazmitdinov† and L M Robledo
Departamento de Fı́sica Téorica C–XI, Universidad Aut́onoma de Madrid, E–28049 Madrid,
Spain

Received 2 October 1996

Abstract. A method based on the generating function technique is proposed to calculate matrix
elements of the three-dimensional rotation operator for anisotropic Gaussian wavefunctions.

Among the many sets of wavefunctions used in quantum mechanical calculations of atoms,
molecules and atomic nuclei (see [1] for an extensive review) the Cartesian Gaussian (CG)
set [2, 3] is commonly used due to its simple analytical form. The CG basis has some
disadvantages, such as having the right asymptotical behaviour or not fulfulling the cusp
conditions at the nuclear centres, but its simple analytical form allows for an analytical
and efficient evaluation of the various matrix elements needed in the calculations [4].
Most of the CG bases used have spherical exponents but it has also been suggested [5]
that using anisotropic exponents of the form−(αxx2 + αyy2αzz

2) could be advantageous
to deal with the anisotropy of the molecular environment. In nuclear physics, where the
concept of symmetry breaking at the mean-field level has been very successful in explaining
collective properties of atomic nuclei such as the appearance of rotational bands, the use of
an anisotropic Gaussian basis is very common [6–8].

In this paper we address the problem of finding analytical expressions for the
representation of the three-dimensional rotation operator in the most general Cartesian,
anisotropic Gaussian (CAG) basis in which the exponent of the Gaussian is not isotropic
(this basis is also refered to as the elliptical Gaussian basis). The results obtained include
as a limiting case the representation of the rotation operator for the isotropic Gaussian basis
(results for isotropic Hermite–Gaussian functions and rotations along one axis can be found
in [9]). The motivation for this calculation is that this representation is needed whenever one
wants to include quantum mechanical effects beyond the Born–Oppenheimer approximation
in dealing with the rotational bands of molecules [10], molecular collisions [11] or rotational
spectra in atomic nuclei [12, 13].

The rotation matrix to be computed is defined as

R̂(�)|n〉 =
∑
n′
Rnn′(�)|n′〉 (1)
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where R̂(�) is the operator of active rotations written in terms of the Euler angles
� = (α, β, γ ) [14]

R̂(�) = e− iαĴz e− iβĴy e− iγ Ĵz (2)

and the ket|n〉 is a shorthand notation for the CAG wavefunction

〈r|n〉 ≡ 〈r|nx, ny, nz; bx, by, bz〉 = 9nx (x/bx)9ny (y/by)9nz(z/bz) (3)

where

9ni (xi/bxi ) =
(
xi

bxi

)ni
e−

1
2 (xi/bxi )

2
. (4)

Herebxi is the characteristic length along each direction and the indexxi stands for the set
x, y andz. Let us note that these functions are not orthogonal:∫ ∞

−∞
dxi9ni

(
xi

bxi

)
9n′i

(
xi

bxi

)
=
√
πbxi (ni + n′i − 1)!!

2(ni+n′i )/2
δni+n′i ,even. (5)

The matrix elements of the rotation operator between CAG wavefunctions with different
lengths can be written, in general, as

Rnn′(�) ≡ 〈nx, ny, nz; bx, by, bz|R̂(�)|n′x, n′y, n′z; cx, cy, cz〉 = I nxnynzn′xn′yn′z
(6)

where the quantityI
nxnynz
n′xn′yn′z

is the following integral

I
nxnynz
n′xn′yn′z

=
∫

d3r

(
x

bx

)nx ( y
by

)ny ( z
bz

)nz ( x ′
cx

)n′x ( y ′
cy

)n′y ( z′
cz

)n′z
e−

1
2rMr. (7)

Herer′ = (x ′, y ′, z′) are the rotated coordinates defined byR̂ (�)9(r) = 9(r′) and related
to r according tor′ = D(αβγ )r with the real and unitary matrixD(�) given by

D(�) =
( cosγ sinγ 0
− sinγ cosγ 0

0 0 1

)( cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

)( cosα sinα 0
− sinα cosα 0

0 0 1

)
. (8)

The matrixM in the exponent is

M(�) = B2+ DT(�)C2D(�) (9)

with B2 andC2 given by

B2 =
 1/b2

x 0 0
0 1/b2

y 0
0 0 1/b2

z

 C2 =
 1/c2

x 0 0
0 1/c2

y 0
0 0 1/c2

z

 . (10)

From its definition it is clear that the matrixM is real, symmetric and definite positive.
To compute the integral we use the generating function technique. The generating

function of the monomial(x/bnxx )(y/by)
ny (z/bz)

nz is defined as

e2pBr =
∑
nxnynz

2nx+ny+nz
pnxx

nx !

p
ny
y

ny !

pnzz

nz!

(
x

bx

)nx ( y
by

)ny ( z
bz

)nz
. (11)

Using it, the calculation ofI
nxnynz
n′xn′yn′z

is reduced to the evaluation of the much simpler integral∫
d3r e−

1
2rMr+2ar =

∑
nxnynzn′xn′yn′z

2N+N
′ pnxx

nx !

p
ny
y

ny !

pnzz

nz!

q
n′x
x

n′x !

q
n′y
y

n′y !

q
n′z
z

n′z!
I
nxnynz
n′xn′yn′z

(12)



3D rotation operator in the anisotropic Gaussian basis 1255

where we have introduced the column vectora = Bp+DTCq and definedN = nx+ny+nz
andN ′ = n′x + n′y + n′z. Once this integral has been computed, the result is expanded in
powers ofp andq. Comparing this expansion with the right-hand side of equation (12) the
desired result is obtained.

The integral is straightforward,∫
d3r e−

1
2rMr+2ar = (2π)3/2√

detM
e2aM−1a = (2π)3/2√

detM
e2tm−1t (13)

and the result has been expressed in terms of the vectort = KTa whereK is the unitary
matrix that diagonalizes the Hermitian matrixM, i.e. MK = Km , and m denotes the
diagonal matrix of eigenvalues ofM. Now using the explicit expression oft = KTa =
KTBp+ KTDTCq we can expand the right-hand side of equation (13) as∑
f1f2f3g1g2g3

∏
s=1,2,3

2fs+gs (fs + gs − 1)!!

fs !gs !m
(fs+gs)/2
s

δfs+gs ,even

( 3∑
n=1

Lsnpn

)fs( 3∑
n=1

Fsnqn

)gs
(14)

where the following definitions have been introduced,

Lij = (KTB)ij (15)

Fij = (KTDTC)ij . (16)

Now the quantities(
∑

n Lsnpn)
fs and (

∑
n Fsnqn)

gs are expanded in powers of thepi and
qi ( 3∑

n=1

Lsnpn

)fs
= fs !Lfsss

fs∑
as=0

fs−as∑
bs=0

p
fs−as−bs
s

(fs − as − bs)!
∏
n6=s

(
Lsn

Lss

)rn prnn
rn!

(17)

( 3∑
n=1

Fsnqn

)gs
= gs !Fgsss

gs∑
ds=0

gs−ds∑
hs=0

q
gs−ds−hs
s

(gs − ds − hs)!
∏
n6=s

(
Fsn

Fss

)rn qrnn
rn!

(18)

where for eachs the couple of indicesri and rj (i < j ; i, j 6= s) stand foras and bs
(or ds and hs), respectively. The quantityI

nxnynz
n′xn′yn′z

is proportional to the coefficient of

p
nx
1 p

ny
2 p

nz
3 q

n′x
1 q

n′y
2 q

n′z
3 in the expansion (14) which leads to the following systems of equations

for the indices of equations (17) and (18):

nx = f1− a1− b1+ a2+ a3 (19a)

ny = f2− a2− b2+ a1+ b3 (19b)

nz = f3− a3− b3+ b1+ b2 (19c)

and

n′x = g1− d1− h1+ d2+ d3 (20a)

n′y = g2− d2− h2+ d1+ h3 (20b)

n′z = g3− d3− h3+ h1+ h2. (20c)

Summing up separately the three equations of equation (19) and (20) we get

N = nx + ny + nz = f1+ f2+ f3 (21)

and

N ′ = n′x + n′y + n′z = g1+ g2+ g3 (22)
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respectively. These relations show that the rank of each system is two; i.e. in each system
of three equations in equations (19) and (20) two out of the six unknowns can be determined
in terms of the others. Taking into account the above constraints we can write

I
nxnynz
n′xn′yn′z

=
∑

f1+f2+f3=N

∑
g1+g2+g3=N ′

Q
nxnynz
f1f2f3

(L)Nf1f2f3
g1g2g3

Q
n′xn
′
yn
′
z

g1g2g3 (F) (23)

with the following definitions,

Nf1f2f3
g1g2g3

= (2π)3/2√
detM

∏
s=1,2,3

B
fs
ss (fs + gs − 1)!!Cgsss

m
1
2 (fs+gs)
s

δfs+gs ,even (24)

and

Q
nxnynz
f1f2f3

(L) = nx !ny !nz!
∏

s=1,2,3

(
Lss

Bss

)fs (∑
as ,bs

1

(fs − as − bs)!
∏
n6=s

(
Lsn

Lss

)rn 1

rn!

)
. (25)

Here the sum indicesas andbs are restricted by equation (19). The quantityQ
n′xn
′
yn
′
z

g1g2g3 (F) is
defined as in equation (25) but substituting the matrixL by F, the indicesfs by gs , Bss by
Css and restricting the sum indices by equation (20).

In the limit α = β = γ = 0 the rotation matrixD(0) is the unity matrix,M is diagonal
andK is also the unity matrix. Therefore, theL andF matrices are diagonal implying that

Q
nxnynz
f1f2f3

(L) andQ
n′xn
′
yn
′
z

g1g2g3 (F) will only be different from zero when the exponents of the off
diagonal elements ofF andL are zero (i.e.as = bs = gs = hs = 0) and then

Q
nxnynz
f1f2f3

(L) = δf1,nx δf2,ny δf3,nz (26)

Q
n′xn
′
yn
′
z

g1g2g3 (F) = δg1,n′x δg2,n′y δg3,n′z . (27)

This result shows that the quantityNf1f2f3
g1g2g3 is nothing but the matrix overlap of our bases.

Another interesting limit corresponds to the isotropic case where the matricesB andC
are proportional to the unity matrix. In this caseM is also diagonal andK is again the unity
matrix. ThenL = B implying Q

nxnynz
f1f2f3

(L) = δf1,nx δf2,ny δf3,nz . On the other hand,F = DTC
and therefore

Q
n′xn
′
yn
′
z

g1g2g3 (F) = n′x !n′y !n′z!
∑

h1h2h3d1d2d3

D
g1−d1−h1
11 D

d1
21D

h1
31

(g1− d1− h1)!d1!h1!

D
g2−d2−h2
22 D

d2
12D

h2
32

(g2− d2− h2)!d2!h2!

× D
g3−d3−h3
33 D

d3
13D

h3
23

(g3− d3− h3)!d3!h3!
(28)

where the summation indices are again restricted by equation (20).
In conclusion, we have obtained an analytical expression for the rotation matrix in the

Gaussian anisotropic basis that is well suited for practical applications as in, for instance,
the full quantal treatment of the rotational motion in molecules or atomic nuclei.
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